Dreisatz

Mit Hilfe des Dreisatzes lässt sich aus einem bekannten Verhältnis zwischen zwei Mengen oder Werten auf andere Mengen oder Werte schließen. Anstatt dabei aus einem Verhältnis direkt auf ein anderes zu schließen, vereinfacht man die Berechnung, indem man in einem Zwischenschritt erst ein einfacheres Verhältnis berechnet.

Beispiel für den Dreisatz

Ein einfaches Beispiel für den Dreisatz lautet: 

  1. Das bekannte Verhältnis: "500 Gramm Kirschen kosten 2,50 Euro"
  2. Das einfache Verhältnis: "100 Gramm Kirschen kosten 50 Cent"
  3. Das gesuchte Verhältnis: "700 Gramm Kirschen kosten 3,50 Euro"

In diesem Beispiel, macht man es sich zunutze, dass es einfacher ist, zuerst den Preis von 100 Gramm Kirschen zu berechnen und daraus auf den Preis von 700 Gramm zu schließen, als auf dem direkten Weg 700 Gramm durch 500 Gramm zu dividieren und mit 2,50 Euro zu multiplizieren.

Einfacher und umgekehrter Dreisatz

Je nach Situation muss man den beim Dreisatz zwischen dem einfachen und dem umgekehrten Dreisatz unterscheiden. Der einfache Dreisatz wird überall da angewandt, wo eine Erhöhung des einen Wertes zu einer Erhöhung des anderen Wertes im selben Verhältnis führt. Man sagt hier, dass die beiden Werte proportional zueinander sind.

Typische Anwendungsfälle für den einfachen Dreisatz sind Preisberechnungen, wie in dem genannten Beispiel. Ein anderes Beispiel für den einfachen Dreisatz wäre: 

  1. Fünf Äpfel wiegen einen Kilogramm.
  2. Ein Apfel wiegt zweihundert Gramm
  3. Sieben Äpfel wiegen 1,4 Kilogramm

Charakteristisch für den einfachen Dreisatz ist, dass das Verhältnis (der Quotient) der beiden Werte immer gleich bleibt.

Der umgekehrte Dreisatz wird dagegen überall dort angewandt, wo eine Erhöhung des einen Wertes zu einer Verringerung des anderen Wertes führt. Hier sagt man, die beiden Werte seien anti-proportional zu einander.

Ein Beispiel für den umgekehrten Dreisatz ist: 

  1. Zwei Bauarbeiter benötigen 5 Stunden, um eine Mauer zu errichten.
  2. Ein Bauarbeiter alleine benötigt 10 Stunden.
  3. Vier Bauarbeiter benötigen gemeinsam nur 2,5 Stunden. 

In diesem Fall muss man also die Dauer, die ein einzelner Bauarbeiter benötigt, nicht mit der Anzahl der Bauarbeiter multiplizieren, sondern durch sie dividieren, um auf den gesuchten Wert zu kommen. Damit zeichnet sich der umgekehrte Dreisatz dadurch aus, dass das Produkt der beiden Werte immer gleich bleibt.

Ein anderes Beispiel für den umgekehrten Dreisatz wäre: 

  1. Wenn ich 80 km/h fahre, benötige ich 3:45 Stunden um eine Strecke von 300 Kilometern zurück zu legen.
  2. Wenn ich 100 km/h fahre, benötige ich 3 Stunden für dieselbe Strecke.
  3. Wenn ich nur 50 km/h fahre, benötige dagegen 6 Stunden.

Häufige Fehler bei der Anwendung des Dreisatzes

Bevor man den Dreisatz anwendet, muss man sich sicher sein, dass er in der betrachteten Situation wirklich zutrifft. Das ist nur dann der Fall, wenn die eine Größe tatsächlich die andere Größe beeinflusst, und wenn die beiden Größen in einer linearen Abhängigkeit zueinander stehen.

Ein Fehler der ersten Sorte besteht darin, den Einfluss einer Größe auf die andere anzunehmen, wo keiner besteht. Eine Frage, bei der die Anwendung des Dreisatzes falsch wäre, ist beispielsweise: "Wenn eine Frau schwanger ist, dauert es neun Monate, bis das Baby geboren wird. Wie lange dauert es, wenn zwei Frauen schwanger sind?"

Dass die Anwendung des Dreisatzes hier völlig absurd wäre, ist auf den ersten Blick deutlich. Es gibt aber auch andere Fälle, in denen der Dreisatz auf zwei Größen nicht angewandt werden kann, die nicht ganz so offensichtlich sind. Beispielsweise kann nicht aus einem bekannten Verhältnis zwischen der Einwohnerzahl eines Landes und seinem Bruttosozialprodukt auf die Einwohnerzahl eines anderen Landes geschlossen werden, dessen Bruttosozialprodukt bekannt ist. Hier besteht zwar ein gewisser Zusammenhang, allerdings haben auch noch so viele andere Größen Einfluss auf das Ergebnis, dass der Dreisatz alleine nicht weiterhilft.

Ein Fehler der zweiten Sorte tritt überall dort auf, wo ein linearer Zusammenhang vermutet wird, obwohl keiner besteht. Beispielsweise hat ein Quadrat mit einer Kantenlänge von zwei Zentimetern eine Fläche von vier Quadratzentimetern. Ein Quadrat mit einer Kantenlänge von einem Zentimeter hat aber nicht eine Fläche von zwei Quadratzentimetern, sondern von lediglich einem Quadratzentimeter.

Um Fehler dieser Art auszuschließen, sollte immer überprüft werden, dass die Verdoppelung des einen Wertes zu einer Verdoppelung (einfacher Dreisatz), bzw. Halbierung (umgekehrter Dreisatz) des anderen Wertes führt.