Produktregel

Die Produktregel besagt, wie die Ableitung von einem Produkt zweier Funktionen gebildet wird. Sie lautet:

Produktregel

In Worten lautet die Produktregel:

Das Produkt zweier Funktionen wird abgeleitet, indem man das Produkt aus der Ableitung der ersten Funktion mit der zweiten Funktion zum Produkt der ersten Funktion mit der Ableitung der zweiten Funktion addiert.

Beispiele für die Produktregel

Am anschaulichsten ist die Produktregel, wenn wir sie uns an einigen Beispielen ansehen. Beginnen wir mit:

Das Produkt zweier Funktionen

In diesem Beispiel lauten die beiden Funktionen, die miteinander multipliziert werden:

Die beiden zu multiplizierenden Funktionen

Wir bilden jeweils die Ableitung:

Die Ableitungen der ersten multiplizierten Funktion

und:

Die Ableitungen der zweiten multiplizierten Funktion

Mit der Produktregel folgt:

Anwendung der Produktregel

Als nächstes sehen wir uns diese Funktion an:

Ein weiteres Beispiel für die Multiplikation von Funktionen

Zunächst leiten wir beide Faktoren wieder jeweils einzeln ab:

Die Ableitungen der beiden Funktionen

Mit Hilfe der Produktregel bilden wir jetzt die Ableitung des Produktes:

Die Ableitung des Produkts

Mehrfache Anwendung der Produktregel

Wir können die Produktregel natürlich auch mehrfach anwenden, wenn wir eine Funktion ableiten sollen, die das Produkt von drei oder mehr Funktionen ist. Sehen wir uns beispielsweise diese Funktion an:

Produkt dreier Funktionen

Im ersten Schritt setzen wir Klammen, um zu bestimmen, in welcher Reihenfolge wir die einzelnen Faktoren ableiten:

Produkt dreier Funktionen geklammert

Den ersten Faktor können wir direkt ableiten. Der zweite Faktor – das Produkt in der Klammer – leiten wir wieder über die Produktregel ab:

Einfache Anwendung der Produktregel

Jetzt erhalten wir insgesamt:

Mehrfachanwendung der Produktregel

Die Produktregel wenden wir in der ersten Termumformung an. In den weiteren Termumformungen vereinfachen wir die Formel nur noch.

Potenzen, Potenzgesetze und Potenzregeln

Mathe Bilder, Depositphotos
Mathe Bilder, Depositphotos

In Potenzen wird ausgedrückt, dass eine Zahl mehrere Male mit sich selbst multipliziert wird. Insbesondere Potenzfunktionen und Polynome spielen in der höheren Schulmathematik eine wichtige Rolle. Es hat daher fundamentale Bedeutung für Schüler, die Potenzregeln auswendig zu lernen und wie im Schlaf zu beherschen. Häufig werden Nullstellen von Polynomen gesucht. Die p-q-Formel und die sogenannte „Mitternachtsformel“ sind einfache Möglichkeiten, diese Nullstellen zu berechnen. Die Formeln werden auch in der fortgeschrittenen Mathematik der Oberstufe benötigt, wenn mit Hilfe von Ableitungen die ersten Optimierungsprobleme gelöst werden. Um Minima und Maxima einer Funktion zu finden, müssen nämlich regelmäßig die Nullstellen von Polynomen ermittelt werden. Damit das Rechnen mit Potenzen in den späteren Klassenstufen nicht zum Hindernis bei der Lösung von Aufgaben wird, sollten die Potenzregeln schon früh geübt und verinnerlicht werden.

Grundlegende Potenzregeln

Formel Bedeutung
Potenz mit dem Exponent 0 Potenz mit dem Exponent 0
Potenz mit dem Exponent 1 Potenz mit dem Exponent 1
Multiplikation von Potenzen mit gleicher Basis Multiplikation von Potenzen mit gleicher Basis: Potenzen mit gleicher Basis werden multipliziert, indem ihre Exponenten addiert werden.
Potenzierung von Potenzen Potenzierung von Potenzen: Potenzen werden potenziert, indem alle Exponenten miteinander multipliziert werden.
Multiplikation von Potenzen mit gleichem Exponent Multiplikation von Potenzen mit gleichem Exponent: Potenzen mit gleichem Exponent werden multipliziert, indem die Basen multipliziert werden.
Potenz mit negativem Exponenten Potenz mit negativem Exponenten
Division von Potenzen mit gleicher Basis Division von Potenzen mit gleicher Basis
Potenz deren Exponent das Inverse einer natürlichen Zahl ist Potenz deren Exponent das Inverse einer natürlichen Zahl ist
Potenz deren Exponent ein Bruch ist Potenz deren Exponent ein Bruch ist. (Achtung: wenn n gerade ist, muss a größer als 0 sein!)

Lösungregeln für Terme mit Potenzen

Formel Bedeutung
p,q-Formel p-q-Formel
Die a,b,c-Formel Die a,b,c-Formel, oder auch „Mitternachtsformel“

p-q-Formel – Herleitung und Erklärung

Mit p-q-Formel lassen sich quadratische Gleichungen der Form:

Allgemeine Form einer quadratischen Gleichung

leicht lösen. Die p-q-Formel besagt, dass es maximal zwei Lösungen für solche Gleichungen gibt, und zwar:

Die p-q-Formel in kompakter Form

Die Kombination aus Plus und Minus vor der Wurzel besagt dabei, dass die Wurzel für die eine Lösung addiert und für die andere Lösung subtrahiert werden muss. Ausgeschrieben lauten die beiden Lösungen der p-q-Formel also:

Ausführliche Form der p-q-Formel

Selbstverständlich gibt es auch für die p-q-Formel keine Ausnahme von der Regel, dass unter der Wurzel keine negative Zahl stehen darf (zumindest in der Menge der reelen Zahlen, mit denen Schüler üblicherweise rechnen). Wenn also unter der Wurzel ein negativer Wert entsteht, liefert die p-q-Formel kein Ergebnis. Die quadratische Gleichung hat in diesem Fall keine Lösung.

Beispiele für die p-q-Formel

In unserem ersten Beispiel sehen wir uns diese Formel an:

x^2 + 10 x + 9 = 0

In dieser Gleichung ist das gesuchte p gleich 10 und q ist gleich 9. Eingesetzt in die p-q-Formel ergibt das:

Wir erhalten also als Ergebnis, dass die Gleichung zwei Lösungen hat: -9 und -1.

Im nächsten Beispiel betrachten wir die Gleichung:

3x(x+2)-9 = 0

Diese Gleichung liegt nicht in einer Form vor, dass wir p und q direkt ablesen können. Wir müssen daher zuerst die Klammer ausmultiplizieren. Dadurch erhalten wir die Gleichung in dieser Form:

3x^2 + 6x - 9 = 0

Auch in dieser Form können wir p und q noch nicht direkt ablesen, da vor dem quadratischen Term noch ein Faktor steht. Wir müssen also entweder auf die a-b-c-Formel zurückgreifen oder die Gleichung um 3 kürzen. Da auf der rechten Seite 0 steht ist dies problemlos möglich, und wir erhalten:

Jetzt erhalten wir endlich p = 2 und q = -3. Einsetzen in die p-q-Formel ergibt:

In einem dritten Beispiel sehen wir uns diese Gleichung an:

Hieraus lesen wir p = 2 und q = 5 ab und setzen in die p-q-Formel ein:

An dieser Stelle brechen wir die Berechnung ab, weil unter der Wurzel ein negativer Wert steht. Im Bereich der reelen Zahlen gibt es für die Gleichung keine Lösung. Die quadratische Gleichung hat also keine Nullstelle.

Herleitung der p-q-Formel

Eine quadratische Gleichung in der Form:

Allgemeine quadratische Gleichung

lässt sich nicht so einfach nach x auflösen. Bei der Herleitung der p-q-Formel bedient man sich daher eines Tricks. Es ist nämlich einfach, eine quadratische Gleichung dieser Form nach x aufzulösen:

Eine quadratische Gleichung mit Hilfe der binomischen Formel auflösen

Im zweiten Schritt haben wir die erste binomische Formel angewandt, wodurch es leicht möglich war, x auf der linken Seite zu lassen und alles weitere auf die rechte Seite zu bringen.

Der Trick bei der p-q-Formel besteht nun darin, unsere quadratische Gleichung zuerst in eine Form zu bringen, die uns die Anwendung der ersten binomischen Formel erlaubt. Die Herleitung sieht< so aus:

Herleitung der p-q-Formel

Die binomische Formel haben wir hier im Übergang von der dritten zur vierten Gleichung genutzt. Auf diese Weise war die Herleitung der p-q-Formel einfach.

Logarithmus

Der Logarithmus ist eine mathematische Funktion, die zur Berechnung von exponentiellen und logarithmischen Funktionen verwendet wird. In diesem Blogbeitrag lernst du die Grundlagen des Logarithmus kennen und erfährst, wie man ihn berechnet.

Der Logarithmus gibt zu einer gegebenen Potenz bei einer gegebenen Basis den bisher unbekannten Exponenten wieder. Der Logarithmus erlangt insbesondere in der höheren Mathematik dadurch Bedeutung, dass in ihm Multiplikation und Addition zusammenfallen und mit seiner Hilfe die irrationale Zahl e, die Eulersche-Zahl, definiert wird.

Logarithmus

Formel Bedeutung
Definition des Logarithmus Definition des Logarithmus
Nullstelle aller Logarithmen Nullstelle aller Logarithmen
Addition von Logarithmen Addition von Logarithmen
Negation von Logarithmen Negation von Logarithmen
Subtraktion von Logarithmen Subtraktion von Logarithmen
Multiplikation eines Logarithmus Multiplikation eines Logarithmus mit einer natürlichen Zahl
Division von Logarithmen Division von Logarithmen

Spezielle Logarithmen

Formel Bedeutung
Definition der Eulersche Zahl Definition der Eulersche Zahl
Definition des natürlichen Logarithmus Natürlicher Logarithmus
Definition des dekadischen Logarithmus Dekadischer Logarithmus
Definition des binären Logarithmus Binärer Logarithmus

Zusammenfassung

Der Logarithmus ist ein wichtiges mathematisches Konzept, das in vielen Bereichen der Mathematik und Physik verwendet wird.

Der Logarithmus ist eine Umkehrfunktion der Exponentialfunktion. Wenn wir also die Exponentialfunktion mit dem Basis 10 auf die Zahl 100 anwenden, erhalten wir die Zahl 10. Dies bedeutet, dass der Logarithmus der Zahl 10 zur Basis 10 gleich 1 ist. Wir können diese Beziehung auch in einer Gleichung ausdrücken:

log10(100) = 1

In der gleichen Weise können wir auch den Logarithmus von anderen Zahlen berechnen. Zum Beispiel ist der Logarithmus von 1000 zur Basis 10 gleich 3, da 1000 = 10^3 ist. Wir können auch feststellen, dass der Logarithmus von 0,1 zur Basis 10 gleich -1 ist, da 0,1 = 10^-1 ist.

Die obige Gleichung kann auch so geschrieben werden:

log10(x) = y

Dies bedeutet, dass x die Zahl ist, zu der wir den Logarithmus nehmen wollen und y die Antwort ist. Es gibt auch andere Arten von Logarithmen, zum Beispiel den natürlichen Logarithmus (ln). Der natürliche Logarithmus hat die Eigenschaft, dass ln(e) = 1 ist, wo e die Eulersche Zahl ist (e ≈ 2,71828). Dies bedeutet, dass der natürliche Logarithmus einer beliebigen Zahl gleich dem Exponentiallogarithmus dieser Zahl mit der Basis e ist.

Die Definition des Logarithmus kann auch so formuliert werden: Wenn y = b^x (b > 0; b ≠ 1), dann nennt man logb(y) = x den logarithmischen Koeffizienten oder Exponent von y zur Basis b.

Linksammlung Mathematik

Auf dieser Seite findest Du eine Sammlung von interessanten und nützlichen Seiten zur Mathematik und Schule allgemein. Die verlinkten Seiten wurden von uns sorgfältig ausgewählt und angesehen. Da wir sie allerdings nicht laufend kontrollieren, können wir keine Garantie für ihren Inhalt übernehmen. Sollte einer dieser Links ins Leere führen oder die dahinter stehende Seite für eine Verlinkung zukünftig ungeeignet sein, informiere uns bitte mit einer kurzen Mail an: info@formelsammlung-mathe.de. Solltest Du noch weitere interessante Seiten zur Mathematik kennen, die hier fehlen, freuen wir uns ebenfalls über eine Mail.

Selbstverständlich freue ich mich auch selbst über eine Verlinkung auf geeigneten Seiten. Füge hierfür einfach folgenden Code in Deine HTML-Datei ein:

<p>
  <a 
    href="https://www.formelsammlung-mathe.de" 
    title="Formelsammlung Mathe mit Ableitungen, Logarithmus, Bruchrechnen, Funktionen etc."
  >Eine Formelsammlung Mathe für Schule und Studium</a>
</p>
  • www.fernstudieren.de: Gesammelte Informationen zu allen wichtigen Themen des Fernstudiums. Diese Seite ist eine sehr gute Quelle für alle Studenten oder Schüler kurz vor ihrem Studium, die daran denken, ein Fernstudium aufzunehmen.
  • Rechnungswesen, BWL & VWL verstehen: Rechnungswesen, BWL und VWL verständlich erklärt. Mit kostenlosen Fachtexten, Übungsaufgaben und 40 kostenlosen Nachhilfe-Videos.
  • Bettermarks: Bettermarks bietet ein Online-Lernsystem für Mathematik. Schüler können hier effektiv und einfach Mathe üben.
  • Lernnetz24: Das Lernnetz24 ist eine modulare Plattform zum Lernen und Üben im Internet. Der Schwerpunkt liegt dabei auf dem Üben.
  • Ausfürliche Linksammlung für Lehrer und Schüler: Wolfgang Autenrieth stellt in seiner Linksammlung für Schüler und Lehrer mehr als 3000 nützliche und informative Seiten vor.
  • Mathematik.de: Internetportal der Deutschen Mathematiker-Vereinigung mit vielen interessanten Informationen, die sich insbesondere auch an Laien richten.
  • Erklärungen zu Mathematik und Physik Auf seiner Internetseite gibt Rudolf Brinkmann sehr gute und ausführliche Erklärungen zu Mathematik und Physik für Schüler, Eltern und Lehrer.
  • Mathe für Jung und Alt Auf dieser Seite finden Schüler und Erwachsene interessante Knobelaufgaben zur Mathematik, einen Mathewettbewerb, Arbeitblätter und vieles andere rund um Mathematik.
  • Mathematik-Nachhilfe in Zürich Mathematik-Nachhilfe für Primar-, Sekundar-, Berufsschüler und Erwachsene
  • Matheboard Im Matheboard erhalten SchülerInnen Unterstützung bei Fragestellungen rund um das Thema Mathematik. Das Portal ist kostenfrei und es ist keinerlei Registrierung erforderlich. Das Themenspektrum ist vielseitig und lässt von Trigonometrie über Kurvendiskussion bis hin zu Extremwertaufgaben keine Fragen offen.

Kettenregel – Erklärung und Anwendung

Die Kettenregel für Ableitungen besagt, wie verknüpfte Funktionen abgeleitet werden. Sie lautet:

Die Kettenregel

Verknüpfte Funktionen werden also abgeleitet, indem man zuerst die Ableitung der äußeren Funktion bildet, in diese Ableitung die innere Funktion unverändert einsetzt und anschließend das Ergebnis noch einmal mit der Ableitung der inneren Funktion multipliziert. In Kurzform kann man sich die Kettenregel merken als: „Innere Ableitung mal äußere Ableitung“.

Anwendungen und Beispiele für die Kettenregel

Sehen wir uns als ersten Beispiel diese Funktion an:

Erstes Beispiel für die Kettenregel: Ausgangsfunktion

In dieser Funktion sind zwei Funktionen verknüpft:

Erstes Beispiel für die Kettenregel: Verknüpfte Funktionen

Dabei ist f die äußere und g die innere Funktion. Um die Ableitung von h zu bilden, leiten wir zunächst f und g einzeln ab:

Erstes Beispiel für die Kettenregel: Ableitungen der beiden verknüpften Funktionen

Jetzt bilden wir die Ableitung von h, indem wir g in f’ einsetzen und das Ergebnis mit g’ multiplizieren:

Erstes Beispiel für die Kettenregel: Anwendung der Kettenregel

Als nächstes sehen wir uns diese Funktion an:

Zweites Beispiel für die Kettenregel: Abzuleitende Funktion

Wieder liegen hier zwei verknüpfte Funktionen vor. Es sind:

Zweites Beispiel für die Kettenregel: Die beiden verknüpften Funktionen

Und wir bilden zunächst wieder die Ableitungen dieser beiden Funktionen:

Zweites Beispiel für die Kettenregel: Ableitungen der verknüpften Funktionen

Einsetzen in die Kettenregel ergibt:

Zweites Beispiel für die Kettenregel: Anwendung der Kettenregel

Mehrfache Anwendung der Kettenregel

Wenn mehr als nur zwei Funktionen verkettet werden, ist es notwendig, die Kettenregel mehrfach anzuwenden. Wenn wir uns allerdings an Vorgehen halten, das oben gezeigt wird, ist das kein Problem. Betrachten wir als Beispiel den Ausdruck:

Komposition mehrerer Funktionen

Wir sehen uns zunächst an, aus welchen Funktionen dieser Ausdruck zusammengesetzt ist:

Mehrfach verknüpfte Funktionen - einzeln

Insgesamt gilt also:

Mehrfach verknüpfte Funktion - Schema

Um diesen Ausdruck abzuleiten, bilden wir als Erstes die Ableitungen der drei verknüpften Funktionen:

Ableitungen mehrfach verknüpfter Funktionen

Wir leiten den Ausdruck jetzt „von außen nach innen“ ab. Mit der Kettenregel gilt:

Mehrfache Anwendung der Kettenregel - Schema

In diese Gleichung setzen wir die verknüpften Funktionen und ihre Ableitungen ein:

Mehrfache Anwendung der Kettenregel - Beispiel

Lineare Funktion

Eine lineare Funktion ist eine Abbildung der reellen Zahlen auf die reellen Zahlen in dieser Form:

Allgemeine Form linearer Funktionen

Der Parameter m gibt die Steigung der linearen Funktion an. Wenn er positiv ist, so ist die Funktion streng monoton steigend. Wenn er negativ ist, so ist sie streng monoton fallend. Ist er gleich 0, so hat die Funktion den konstanten Wert n. Ihr Graph verläuft dann parallel zur x-Achse im Abstand n.

Der Parameter n gibt den y-Achsenabschnitt der linearen Funktion an. Für x = 0 hat die Funktion den Wert n. Der Graph der Funktion schneidet die y-Achse also genau an der Stelle (0; n).

Falls die Steigung einer linearen Funktion ungleich 0 ist, so ist die Funktion surjektiv und injektiv. Dass sie surjektiv ist, bedeutet dass es zu jedem reellen Wert y einen Wert x gibt, so dass y = f(x). Dass sie injektiv ist, bedeutet, dass für zwei reelle Zahlen u und v aus u ungleich v folgt, dass f(u) ungleich f(v) ist.

Da eine lineare Funktion mit einer Steigung ungleich 0 surjektiv und injektiv ist, ist sie bijektiv. Es gibt deshalb zu ihr eine Umkehrfunktion.

Rechenregeln für lineare Funktionen

Formel Bedeutung
Nullpunkt einer linearen Funktion Nullpunkt
Steigung einer linearen Funktion Steigung aus den bekannten Punkten (x; f(x)) und (y; f(y)) berechnen
y-Achsenabschnitt einer linearen Funktion y-Achsenabschnitt aus den bekannten Punkten (x; f(x)) und (y; f(y)) berechnen
Umkehrfunktion einer linearen Funktion Umkehrfunktion

Nullpunkt einer linearen Funktion berechnen

Den Nullpunkt einer linearen Funktion können wir direkt aus den Werten von m und n berechnen. Um hierfür eine Formel zu erhalten, setzen wir f(x0) = 0 und lösen nach x0 auf. Dabei gehen wir davon aus, dass m ungleich 0 ist. Ansonsten wäre jeder oder kein Wert der Funktion 0.

Formel für den Nullpunkt einer linearen Funktion herleiten

Wir finden den Nullpunkt einer Funktion also immer an der Stelle Nullpunkt - inline.

Steigung einer linearen Funktion berechnen

Wenn wir mindestens zwei Paare von Argument und Wert einer linearen Funktion kennen, können wir ihre Steigung m berechnen. Wenn die beiden Paare als (x; f(x)) und (y; f(y)) gegeben sind (mit x ungleich y), so erhalten wir die beiden Formeln:

Erste Formel - Steigung berechnen

Zweite Formel - Steigung berechnen

Wir lösen die erste Formel zunächst nach n auf:

Erste Formel nach n auflösen

und setzen sie in die zweite Formel ein:

Erste Formel in die zweite eingesetzt

Jetzt lösen wir diese Formel nach m auf:

Auflösung nach m

Mit anderen Worten entspricht die Steigung einer linearen Funktion dem Verhältnis aus der Differenz der Funktionswerte zu der Differenz ihrer Argumente.

y-Achsenabschnitt einer linearen Funktion berechnen

Kennen wir wiederum zwei Paare von Argument und Wert einer linearen Funktion, können wir ihre Steigung m berechnen. Wenn die beiden Paare als (x; f(x)) und (y; f(y)) gegeben sind (mit x ungleich y und beide ungleich 0), so erhalten wir die beiden Formeln:

Erste Formel - Achsenabschnitt berechnen

Zweite Formel - Achsenabschnitt berechnen

Jetzt lösen wir die erste Forml nach m auf:

Erste Formel nach m aufgelöst

und setzen sie in die zweite Formel ein:

Erste Formel in die zweite eingesetzt

Jetzt lösen wir diese Formel nach n auf:

Auflösung nach n

Umkehrfunktion einer linearen Funktion berechnen.

Eine lineare Funktion, deren Steigung m nicht gleich 0 ist, ist eine ein-eindeutige Abbildung zwischen ihrem Definitionsbereich und ihrem Wertebereich. Sie besitzt daher eine Umkehrfunktion. Wir können die Umkehrfunktion einer linearen Funktion leicht berechnen, indem wir sie nach x auflösen:

Umkehrfunktion einer linearen Funktion berechnen

Die Steigung der Umkehrfunktion ist also 1/m und der y-Achsenabschnitt -n/m.

Kehrwertregel für Ableitungen

Die Kehrwertregel ist ein wichtiges Werkzeug für die Differentialrechnung. Sie ermöglicht es uns, die Ableitung von Funktionen zu berechnen, die invers zu einer anderen Funktion sind.

In diesem Artikel zeigen wir dir Schritt für Schritt, wie du die Kehrwertregel anwendest. So kannst auch du bald die Ableitung komplexer Funktionen berechnen!

Die Kehrwertregel besagt, wie der Kehrwert einer Funktion abgeleitet wird. Sie lautet:

Die Kehrwertregel

In Worten: Die Ableitungs des Kehrwerts einer Funktion, ist der negative Quotient aus der Ableitung der Funktion und dem Quadrat der Funktion.

Anwendung und Beispiele für die Kehrwertregel

Als erstes Beispiel für die Kehrwertregel betrachten wir die Ableitung von:

Kehrwert einer Funktion

Dafür bilden wir zunächst einmal die Ableitung des Nenners:

Ableitung des Nenners

Jetzt setzen wir in die Kehrwertregel ein und erhalten:

Anwendung der Kehrwertregel

Als nächstes schauen wir uns noch die Ableitung des Kehrwerts von Cosinus an:

Ableitung des Kehrwerts von Cosinus

Herleitung der Kehrwertregel

Die Kehrwertregel lässt sich aus der Kettenregel herleiten. Hierfür betrachten wir die abzuleitende Funktion als Verknüpfung von zwei anderen Funktionen:

Kehrwert als Verknüpfung zwei Funktionen

Mit der Funktion h als:

Die Kehrwertfunktion

Gemäß der Kettenregel folgt daraus:

Herleitung der Kehrwertregel

Zusammenfassung

Die Kehrwertregel ist besonders nützlich, wenn wir die Ableitung von komplizierteren Funktionen berechnen wollen. Denn oft ist es einfacher, die Ableitung der inverse Funktion zu berechnen und dann diese umzudrehen. Nehmen wir als Beispiel die Ableitung der quadratischen Funktion. Die Kehrwertregel sagt uns, dass wenn wir die Ableitung von f(x) berechnen, also von x^2, dann können wir diese umkehren und erhalten so die Ableitung der inverse Funktion: (1/x^2)‘ = -1/x^3.

Dies ist besonders nützlich, weil es oft einfacher ist, die Ableitung einer inversen Funktion zu berechnen. Wenn wir also beispielsweise die Ableitung von y=4/(x-3) berechnen wollen, können wir dies über y=(1/4)(1/(x-3))‘ machen und uns so den Aufwand sparen.

Größter gemeinsamer Teiler (ggT)

Als größten gemeinsamen Teiler von zwei Zahlen a und b, bezeichnet man die größte Zahl m, die sowohl a als auch b ohne Rest teilt. Beispielsweise ist der größte gemeinsame Teiler von 15 und 12 die Zahl 3. Die Zahl 3 ist nämlich die größte Zahl, die sowohl 12 (12/3 = 4), als auch 15 (15/3 = 5) ohne Rest teilt. Für den größten gemeinsamen Teiler ist die Abkürzung ggT üblich. Sie wird in vielen mathematischen Texte benutzt. Oft wird sie auch als Funktion notiert:

ggT von 12 und 15

Um sich die Bedeutung des Begriffs größter gemeinsamer Teiler zu verdeutlichen, sollte man sich die Konsequenz verdeutlichen, die jeder einzelne seiner Bestandteile hat. Wir beginnen am besten beim letzten und arbeiten uns nach vorne

  • Teiler: Ein Teiler ist jede Zahl, die eine andere Zahl ohne Rest teilt. Beispielsweise hat 15 die Teiler 1, 3, 5 und 15. Die Zahl 24 hat die Teiler 1, 2, 3, 4, 6, 8, 12 und 24. Ein Primzahl hat nur zwei Teiler 1 und die Zahl selbst.
  • gemeinsamer Teiler: Da es sich beim ggT um einen gemeinsamen Teiler handelt, ist klar, dass er immer nur als Eigenschaft von zwei Zahlen zu betrachten ist. Es wäre sinnlos vom ggT einer einzelnen Zahl zu sprechen. Gemeinsam bedeutet, dass nur Teiler betrachtet werden, die beide Zahlen ohne Rest teilen. Genaugenommen handelt es sich bei den gemeinsamen Teilern um die Schnittmenge der Mengen aller Teiler beider Zahlen. Beispielsweise hat die Zahl 30 die Teiler 1, 2, 3, 5, 6, 10, 15 und 30. Die Zahl 12 hat die Teiler 1, 2, 3, 4, 6 und 12. Gemeinsame Teiler beider Zahlen sind: 1, 2, 3 und 6. Die Zahl 12 ist nur Teiler von sich selbst, aber kein Teiler von 30. Die Zahlen 10, 15 und 30 sind nur Teiler von 30 aber keine Teiler von 12.
  • größter gemeinsamer Teiler: Nachdem wir festgestellt haben, dass eine Zahl mehrere Teiler und zwei Zahlen mehrere gemeinsame Teiler haben können, legen wir jetzt fest, dass uns nur der größte unter ihnen interessiert. Im Bereich der ganzen Zahlen ist damit ein ggT eindeutig festgelegt. Man kann also nicht nur sagen, dass 6 ein größter gemeinsamer Teiler von 30 und 12 ist, sondern man muss sogar sagen, 6 sei der größte gemeinsame Teiler von 30 und 12. Diese Eindeutigkeit des ggT wird durch das Attribut größter festgelegt.

Für Schüler ist der größte gemeinsame Teiler besonders in der Bruchrechnung wichtig. Beim Kürzen von Brüchen ist es von Vorteil, den größten gemeinsamen Teiler von Zähler und Nenner zu kennen. Kürzt man den Bruch nämlich mit dem ggT ist er vollständig gekürzt. Zählen und Nenner haben dann keinen weiteren gemeinsamen Teiler mehr, durch den sie sich noch kürzen ließen. Hieran wird auch noch eine andere Eigenschaft des ggT deutlich: Alle gemeinsamen Teiler zweier Zahlen sind Teiler des ggT.

Rechenregeln für den ggT

Für den größten gemeinsamen Teiler gelten folgende Rechenregel:

Formel Bedeutung
Kommutativgesetzt für den ggT Kommutativgesetz
Distributivgesetz für den ggT Distributivgesetz
Assoziativgesetz für den ggT Assoziativgesetz
Vorzeichen im ggT Vorzeichen haben keinen Einfluss auf den ggT
ggT einer Zahl mit Null Der größte gemeinsame Teiler einer Zahl mit Null ist der Betrag der Zahl selbst
ggT einer Zahl mit Eins Der größte gemeinsame Teiler einer Zahl mit Eins ist die Eins selbst
Addition mit ggT Addition des Vielfachen der einen Zahl zur anderen ändert den ggT nicht

Den größten gemeinsamen Teiler ausrechen

Den größten gemeinsamen Teiler zweier Zahlen kann man natürlich wie oben vorgeführt direkt bestimmen, indem man die Teilermengen beider Zahlen bildet, anschließend alle Zahlen wegstreicht, die nur eine der beiden Zahlen teilen, und unter den verbliebenen Zahlen die größte herraussucht.

Die vorgehen ist für kleinere Zahlen bis 50 – in Ausnahmefällen bis 100 – praktikabel. Für größere Zahlen wird es aber schnell unhandlich. Was ist beispielsweise der größte gemeinsame Teiler von 17.640 und 4.158?

Hier hilft uns die Methode der Primfaktorzerlegung weiter. Sie umfasst diese Schritte:

  • Bilde für beide Zahlen die Primfaktorzerlegung
  • Ermittle für alle Primfaktoren, die in beiden Primfaktorzerlegung vorkommen, die jeweils kleinere Potenz.
  • Bilde das Produkt der gemeinsamen Primfaktoren mit der jeweils kleineren Potenz

Dies Vorgehen klingt erst einmal kompliziert wird aber an einem Beispiel gut verständlich. Wie bestimmen hierfür den größten gemeinsam Teiler von 17.640 und 4.158. Zuerst bilden wir die Primfaktorzerlegung von 17.640:

Primfaktorzerlegung von 17.640

Und danach die Primfaktorzerlegung von 4.158

Primfaktorzerlegung 4158

Die Primfaktoren, die in beiden Primfaktorzerlegungen vorkommen sind: 2, 3 und 7. Das Produkt der gemeinsamen Primfaktoren in jeweils der kleineren Potenz ist:

ggT von 17640 und 4158

Dies ist der gesuchte größte gemeinsame Teiler.

Euklidischer Algorithmus

Die Berechnung des größten gemeinsamen Teilers über die Primfaktorzerlegung ist zwar schon etwas handlicher, aber immer noch sehr aufwändig. Gerade bei größeren Zahlen ist es ein nicht unerheblicher Aufwand eine Primfaktorzerlegung zu finden. Eine effizienztere Methode, den größten gemeinsamen Teiler zu finden, ist der Euklidische Algorithmus.

Der Euklidische Algorithmus ist ein sogenannter rekursiver Algorithmus. Das bedeutet, dass derselbe Rechenschritt mehrmals wiederholt wird, wobei sich die Zahlen, mit denen gerechnet wird, aus dem Ergebnis des letzten Rechenschritts ergeben.

Der Euklidische Algorithmus lautet:

  • Nimm zwei Zahlen a und b, so dass a > b ist.
  • Dividiere a / b mit Rest
  • Wenn der Rest 0 ist, bist du fertig. Der größte gemeinsame Teiler ist dann genau b.
  • Wenn der Rest größer als 0 ist, wiederhole die Rechnung für b und den Rest.

So können wir beispielsweise mit dem euklidischen Algorithmus den größten gemeinsamen Teiler von: 10.893 und 24.531 ausrechnen:

Beispiel zum Euklidischen Algorithmus

Der größte gemeinsame Teiler der beiden Zahlen ist also 3. Dies konnten wir mit dem Euklidischen Algorithmus sehr leicht berechnen. Dank der einfachen Rechenvorschrift, können wir die notwendigen Schritte solange mechanisch abarbeiten, bis wir das Ergebnis haben.

Funktionen

Als Funktion f, bzw. „Abbildung“, bezeichnen wir in der Mathematik eine Vorschrift f, die jedem Element x aus einer Menge M genau ein Element f(x) in einer zweiten Menge N zuordnet. Die Menge M heißt Definitionsbereich, die Menge N Wertebereich von fx wird als Argument oder Urbild bezeichnet, f(x) als Bild.

Die „Vorschrift“ für die Zuordnung kann verbal gegeben werden. Falls M und N jeweils Menge der reellen Zahlen (die Menge der reellen Zahlen) ist, so könnte sie lautet: „Ordne jeder Zahl x die Zahl zu, die genau doppelt so groß wie x ist“. Die verbale Angabe ist in der Regel aber zu umständlich oder ungenau. Funktionen werden deshalb üblicherweise über eine Rechenvorschrift definiert. Die eben genannte Zuordnung würden wir beispielsweise so notieren:

Beispiel für die Funktionsdefinition

Diese Funktionsdefinition wird so gelesen: „Die Funktion f ist eine Abbildung der reellen Zahl auf reelle Zahlen. Sie ordnet jeder reellen Zahl x die reelle Zahl f(x) = 2x zu.“

Wichtige Rechenregeln für Funktionen

Formel Bedeutung
Funktionsverkettung Funktionsverkettung
Umkehrfunktion f-1 ist die Umkehrfunktion von f
Surjektive Funktion f ist surjektiv
Bedingung für injektive Funktionen f ist injektiv

(In den Regeln für surjektive und bijektive Funktionen ist M der Definitionsbereich und N der Wertebereich.)

Definitionsbereich

Die Menge M der Zahlen, denen f eine Zahl aus N zuordnet, wird als „Definitionsbereich“ bezeichnet. Wir sagen, die Funktion sei für diese Menge definiert. Im oben genannten Beispiel war der Definitionsbereich als Menge der reellen Zahlen (die Menge der reellen Zahlen) angegeben. Sie ordnet also beispielsweise den Zahlen 26/11, aber auch -3,141 und „Wurzel aus 5“ einen Wert zu. Hätten wir den Definitionsbereich als Menge der natürlichen Zahlen (Menge der natürlichen Zahlen) angegeben, so dürften wir die Funktion nur auf natürliche Zahlen anwenden. Beispielsweise wäre der Wert von f(3/4) dann nicht mehr definiert (obwohl die Rechenvorschrift natürlich auch für 3/4 ein sinnvolles Ergebnis ergibt).

In der Regel wird der Definitionsbereich einer Funktion aber nur eingegrenzt, wenn wir eine Rechenvorschrift haben, die auf bestimmte Zahen nicht angewandt werden darf. Ein Beispiel für eine solche Rechenvorschrift ist:

Rechenvorschrift für 1/x

In diese Rechenvorschrift dürfen wir für x die Zahl 0 nicht einsetzen, weil 1 (wie jede andere Zahl auch) nicht durch 0 geteilt werden darf. Wollen wir eine Funktion mit dieser Rechenvorschrift definieren, so müssen wir die 0 explizit aus dem Definitionsbereich entfernen. Eine zulässige Funktionsdefinition wäre beispielsweise:

Funktion für 1/x

Wenn sich der Definitionsbereich einer Funktion aus dem Kontext ergibt, wird er manchmal nicht noch einmal extra angegeben. Zu einer vollständigen Funktionsdefinition gehört er aber unbedingt dazu.

Wertebereich

Die Menge N, aus der die Werte von f(x) stammen, heißt Wertebereich von f. Es ist nicht notwendig, dass es zu jedem Element y aus N eine Zahl x mit f(x) = y gibt. Das heißt, nicht jeder Wert aus dem Wertebereich muss auch tatsächlich als Wert der Funktion auftreten. Allerdings müssen wir sicherstellen, dass jeder Wert f(x) tatsächlich im Wertebereich der Funktion liegt, da die Funktionsdefinition ansonsten falsch ist.

Beispiel: Das doppelte einer reellen Zahl ist immer eine reelle Zahl, aber nicht in jedem Fall eine rationale Zahl. Eine rationale Zahl, ist eine Bruchzahl, z.B. einhalb, eine reelle Zahl ist Wurzel aus Zwei und auch Zwei mal Wurzel aus Zwei. Angenommen wir haben nun die Rechenvorschrift f(x) = 2x und nehmen als Definitionsbereich die reellen Zahlen. In diesem Fall dürfen wir nicht die rationalen Zahlen als Wertebereich wählen. Das Ergebnis von f angewandt auf Wurzel aus Zwei würde dann nämlich nicht mehr im Wertebereich liegen. Das wäre unzulässig.

Wenn wir für diese Funktion die reellen Zahlen als Definitionsbereich wählen, so muss auch der Wertebereich die Menge der reellen Zahlen sein. Wählen wir aber die Menge der rationalen Zahlen, d.h. der Bruchzahlen, als Definitionsbereich, so können wir den Wertebereich auch auf die rationalen Zahlen einschränken, da das doppelte einer rationalen Zahl immer eine rationale Zahl ist.

Wertetabelle

Eine Wertetabelle gibt einen Überblick über ausgewählte Funktionswerte. Wir erhalten eine Wertetabelle für eine Funktion f, indem wir in die linke Spalte einer Tabelle einen Wert für x und in der rechten Spalte den dazugehörigen Wert für f(x) eintragen. Es gibt keine Vorschrift, die besagt, für welche Werte eine Wertetabelle gebildet werden soll. So viele Möglichkeiten es gibt, Werte aus dem Definitionsbereich zu wählen, so viele mögliche Wertetabellen gibt es. Man kann daher immer nur von einer und nicht von der Wertetabelle einer Funktion sprechen.

Eine Wertetabelle für die Funktion f(x) = x2 könnte beispielsweise so aussehen:

x f(x)
-4 16
-3 9
-2 4
-1 1
-0,5 0,25
0 0
0,5 0,25
1 1
2 4
3 9
4 16

Mehrstellige Funktionen

Bisher haben wir Funktionen kennengelernt, deren Definitionsbereich aus einer einfachen Menge von Zahlen besteht. Es ist allerdings auch möglich, dass der Definitionsbereich aus dem Kreuzprodukt zweier oder mehrerer Mengen besteht. In diesem Fall hat unsere Rechenvorschrift zwei oder mehr Argumente. Ein Beispiel für eine solche Funktion ist:

Beispiel für zweistellige Funktion

Diese Funktion bildet Paare ganzer Zahlen auf einen Bruch ab.

Ein Beispiel für eine fünfstellige Funktion ist:

Beispiel für eine fünfstellige Funktion

Funktionen verketten

Angenommen, wir haben zwei Funktionen f und g. Nun können wir eine neue Funktion h definieren als die Abbildung, die entsteht, wenn wir zuerst g auf das Argument anwenden und auf das Ergebnis noch einmal fh ist also über diese Rechenvorschrift definiert:

Einfache verkettete Funktionen

In diesem Fall sprechen wir von einer Funktionsverkettung, die wir über ein Kreissymbol ausdrücken:

Funktionsverkettung

Bei der Funktionsverkettung müssen wir sicherstellen, dass nur zulässige Werte als Argumente von f auftreten. Das bedeutet, der Wertebereich von g muss eine Teilmenge des Definitionsbereiches von f sein.

Angenommen, g sei als eine Abbildung der Menge A auf die Menge B definiert und f als eine Abbildung der Menge C auf D, so muss sichergestellt sein, dass B eine Teilmenge von C ist. In diesem Fall ist h eine Abbildung von A auf D.

Umkehrfunktion

Eine Funktion g mit der Eigenschaft g(f(x)) = x bezeichnen wird als Umkehrfunktion von f. Eine Umkehrfunktion hebt die Wirkung einer Funktion auf. In der Mathematik bezeichnen wir die Umkehrfunktion zu f als f-1 und es gilt:

Umkehrfunktion in mathematischer Notation

Jede Funktion ist selbst wieder die Umkehrfunktion zu ihrer Umkehrfunktion. Es gilt also:

Umkehrfunktion der Umkehrfunktion

und

Reihenfolge der Verkettung von Umkehrfunktion und Funktion

Es gibt nicht zu jeder Funktion eine Umkehrfunktion. Damit eine Umkehrfunktion definiert ist, muss nämlich die Abbildung zwischen Abbild f(x) und Argument x einer Funktion eindeutig sein. Die Funktion muss also injektiv sein.

Beispiel: Wenn die Quadratfunktion folgendermaßen definiert ist, besitzt sie keine Umkehrfunktion:

Quadratfunktion über positive und negative reelle Zahlen

Zu jedem Wert f(x) (außer 0) gibt es nämlich zwei mögliche Argumente x, die auf diesen Wert abgebildet werden. So wird f(x) = 4 durch 2 und -2 erzeugt, 9 durch 3 und -3, 16 durch 4 und -4 usw. Wir können also keine Funktion definieren, die jedem Bild ein eindeutiges Urbild zuordnet.

Damit die Quadratfunktion eine Umkehrfunktion erhält, müssen wir ihren Definitionsbereich auf die Menge der positiven reellen Zahlen Die Menge der positiven reellen Zahlen einschränken:

Quadratfunktion über positive reelle Zahlen

Jetzt ist das 2 das einzige Urbild von 4, 3 von 9, 4 von 16 usw. Negative Zahlen kommen als Urbilder nicht mehr vor, da sie nicht zum Definitionsbereich von f gehören.

Die Umkehrfunktion von f ist:

Wurzelfunktion als Umkehrfunktion der Quadratfunktion

Es gilt nämlich:

Wurzelfunktion auf Quadratfunktion angewandt

Auch der Definitionsbereich der Umkehrfunktion f-1 musste auf die Menge der positiven reellen Zahlen eingeschränkt werden. Negative Zahlen kommen nicht als Bilder der Quadratfunktion vor. Sie dürfen daher auch nicht als Argumente der Umkehrfunktion erscheinen.

Surjektive Funktionen

Wir haben oben gesagt, dass nicht jedes Element aus dem Wertebereich auch tatsächlich als Wert f(x) einer Funktion vorkommen muss. Funktionen bei denen dies dennoch so ist, bezeichnen wir als surjektive Funktionen. Mit anderen Worten:

Eine Funktion ist surjektiv, wenn es zu jedem Element y aus ihrem Wertebereich N ein Element x aus ihrem Definitionsbereich gibt, so dass y = f(x) ist.

Mathematisch können wir dies so ausdrücken:

Bedingung für surjektive Funktionen

Injektive Funktionen

Es gibt Funktionen, die mehrere Argumente auf denselben Wert abbilden. Andererseits gibt es Funktion, die jeweils nur ein Argument auf einen Wert abbilden. Solche Funktionen bezeichnen wir als injektive Funktionen. Mit anderen Worten:

Eine Funktion f ist injektiv, wenn aus der Tatsache, dass f(u) gleich f(v) ist folgt, dass u gleich v ist, bzw. wenn verschiedene Argument u und v immer auf verschiedene Werte f(u) und f(v) abgebildet werden.

Mathematisch können wir dies so ausdrücken:

Bedingung für injektive Funktionen

Bijektive Funktionen

Ein Funktion gilt als bijektiv, wenn sie sowohl surjektiv als auch injektiv ist. In diesem Fall stellt sie eine ein-eindeutige Beziehung zwischen den Elementen ihres Definitionsbereiches und ihres Wertebereiches dar: Jedem Element aus dem Wertebereich ist genau ein Element aus dem Definitionsbereich zugeordnet.

Fazit

Funktionen können sehr einfach aufgebaut sein, aber ebenso ein Teil Höhere Mathematik.